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Abstract

A uniform magnetic field is required to calibrate magnetic induction sensor coils. Two
types of coil designs are considered; a single finite length solenoid and a coaxially split
coil pair (Helmholtz coil). The design must be able to reliably predict the magnitude of
the calibration field and its homogeneity, both radially and axially, to within certain
tolerances. The experimental results of a design based on the split coil pair are given.
Furthermore, it is suggested that the quasi-uniform field in the mid-plane of a split coil
pair can be usefully extended by narrowing the gap of the conventional Helmholtz coil
pair spacing. In such cases, the flux in a circular region in the mid-plane can
approach the value that would exist for a perfectly uniform field because of the partial
cancellation between fields greater than and less than the central field. The deviation
of the central field from that of an infinitely long solenoid is also discussed.
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Magnetic Field Distribution Within
Uniform Current Density Coils of Non-

Zero Cross-Section and the
Design of Helmholtz Coils

1. Introduction

It is often necessary to have a source for a uniform magnetic field, for example,
to provide a field of known uniformity and magnitude for calibration purposes.
A single coil is easier to construct than a combination of two or more coils but
its field homogeneity may be inadequate; thus a quantitative comparison is
required. Furthermore, there appears to be a paucity of data and tables
available in the literature that allow the design of a system to generate a
homogeneous field over a given region. The coil geometries represented in the
available tables can be too restrictive and the given error limits or uniformity
tolerances may be unsuitable. Another important feature which is not
emphasized is the field uniformity of a slightly uncompensated coil pair having
a gap which differs from the optimum coil pair spacing of a true Helmholtz
coil. Such a coil can generate a nearly uniform field over a larger region than
the true Helmholtz coil. If the flux of the axial field is required, then the
introduced error is improved significantly because of the possible cancellation
of field non-uniformities.

In this report, a brief description of solenoid design is given in terms of the
geometry of the coil [1]. There are two reasons for examining these details.
Firstly, it enables the axial field homogeneity to be determined at radial
distances away from the coil centre. Secondly, as pairs of coils will be
considered as candidates for providing homogeneous fields, the formalism
introduced here for the single coil will also apply to more complex coil designs.



1.1 Magnetic Field at Centre of a Coil of Non-zero
Cross-section

The magnetic field along the axis of a circular current loop is (Fig. 1)

I a2
Hs~z0) - 2 (a 2 +Z2)?/2

where H is in units of A mW1, a is the loop radius in m, z is the distance along
the axis in m and I is the current (amps) in the conductor. Thus

Ho = H.(OO)
(2)

2a

and
a3

H.(z,O) H a 3  (3)

Figure 1: Magnetic field components for a circular current loop; H, and H. are the
radial and axial components respectively.
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The coil geometry is defined in terms of two parameters a and P, see Figure 2.
In this report, where appropriate in mathematical expressions, the following
symbols will be used for dimensionless distances: 4 = rla (W = 7/2), y = z/a,
(0 = 0) and p/a (0 % 2/2, 0 * 0). Either expression (e.g. or r/al) will be used
interchangably.

2 b

a Hr( al,7r/2 )

a ,

LH z' z(r/al1, 7/2)/B 0

1 a2/al Y' z/a 1

Figure 2: Definition of coil geometry parameters a and 0 for a coil of non-zero cross-
section. For a current sheet a -+ a2 = a, and cos 0 = b/(a2 + b)"z , a = 1, P = b/a.

The current density is j (Am "2) (= I,/cross-section area) and for N turns of
uniform current density,

NI (4)
=2b(a 2 -a1 )

If the space factor X, (which represents the active cross-sectional area of the
windirg divided by the total cross-sectional area) is not unity, then
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j = jCi (5)

where j, is the current density in the conductor. As a, -+ a2, a current sheet
obtains, i.e. I' = NI/2b, however, now I is equivalent to current per unit length
and I - r-b~b " dz. Thus H0 for a current sheet obtains from eqn. 1

Y 1r4  I/ dz
(6)

NI

1.1.1 Non-zero Cross-section Coil

For a non-zero cross-section coil (Fig. 2), the field at the centre of the coil H0 is
given by (see eqn. 1)

H° j!X ff (r z2)dzdr
(r + ) / (7)

+(a + 02)1/2

The field H0 is significant in the following analysis because the fields at any
point along the axis, or away from the axis may be expressed in terms of the
central field H0. Furthermore, this also applies to the case of multiple concentric
coils.

One may conveniently separate an entirely geometry-dependent field factor
F(a, 0) from eqn. 7 so that Ho can be readily estimated from values of F(a, 3)
represented in graphical form (see Figs 3 and 4) or tabular form, and the
variation in H0 as a function of coil geometry can also be readily determined.

F(a,13) - 0 x In IE + ( 0 +p2)1/2 (8)
1 +(I +p2)1/2 I

0 1[sinh-'(ct/P) -sinh-l(1/0)]. (9)

10
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Note that

F(a, -[) - -F(ap). (10)

Now

H0 =,jcA.a 1F(a,J3)

• [2aa -1 )F(cJ3). (11)

1.1.2 Deviation of a Field from an Infinitely Long Solenoid

Figures 3 and 4 also display the variation in H0 from the ideal infinitely long
solenoid given by H = n where n(= N123a1) is the turns per unit length.
For example, for a fixed small value of a(a = 15), F(a, 0) is approximately
constant for 0 greater than 2.0 and thus H0 is proportional to n for a coil
having a dimensionless length of 203 > 4.0. Taking this point further, as f3 - cc,

eqn. 9 gives

(a3-1) 3(a5-1) (12)
,-) - + 404

!t is clear that the central field of a real solenoid, Eqn. 11, approaches that of an
infinitely long solenoid, when F(a, 0)/(a - 1) -+ 1.0. In Figure 5, the deviation
factor F(a, 3)/(a - 1) is plotted as a function of the normalized coil length (20)
for various normalized coil thicknesses (a - 1). It is now easy to visualize to
what extent the coil thickness and length affects the deviation of the central
field from that of an infinitely long solenoid (F(a, 0)/(a - 1) = 1.0).

2. Non-Central Field

2.1 Introduction

The axial field away from the centre of the coil, H(r/aj, 7c/2), see Figure 2, may
be computed from published tables given by Hart [2]. Whilst these are
comprehensive, there are several disadvantages. Interpolation may be required
(over a surface or line) and the tables do not easily lend themselves to the
calculation of parameters required to attain a specific field homogeneity, either
from one coil or by a combination of several coils. One useful feature of Hart's
tables is that the fields may be computed at points well away from the central

13
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A superior technique introduced by Garrett [31 treats the field of an axially
symmetric system as an expansion of zonal harmonics (legendre polynomials).
The significance of this approach is that the field at any point in the vicinity of
the origin can be expressed as an infinite series of terms involving simple
algebraic expressions. The vicinity specifies a central region whose boundary
is a sphere that contains no field source and satisfies Laplace's equation. (A
source is any discontinuity of the windings, for example, the boundary edge of
a solenoid.) Thus the distinctive feature of the zonal harmonic method is that
it permits a clean separation of the field geometry from that of the generating
system and it allows the field to be described as a continuous scalar function of
the field coordinates [4].

2.2 Field in a Central Zone

The magnetic field in the central zone of a cylindrically symmetric magnet can
be written as a power series, involving Legendre polynomials, which converges
everywhere within a sphere excluding any field source. If the origin is on the
midplane of symmetry, the series expansion will have only even terms and the
axial and radial fields, H. and Hr, can be expressed as [31, [51

H"(PO) 1 H(2n-2)(0 O)p 2n-2 P2 2(u) (13)
1 (2n -2)! -

H,(P,O) = -sinOt H (0,0)p -P~_2 (u) (14)
,-1 (2n - 1)!

where

d(2--2) ( d2n2Hz(z'O)} (15)H 2  (00)2n-2

P,(u) and P',(u) are respectively the Legendre polynomials and their first
derivatives with respect to cos 0 (u = cos 0), see Table 1, and p and 0 are
defined in Figure 1. Equations 13 and 14 reduce to [11, [51

H(p/a1,O) - H0 1 +E2(p/a 1 )2 p2(u) +E4(p/a 1 )4 P4(u) + .. ] (16)

H,(p/a 1,0) - Ho00- (p/aE pi(U)-.(plad)4(U)-.sin0 (17)
3 5



where HO is defined in eqn. 7,

1 (d2 H.(z,O)(
E.0 (1.18)

and E2, for a uniform current density coil [11, are given in Table 2. Note that
in eqns. 16 and 17, the fields in a region of space around the origin depend only
on H0 and a geometry factor.

Table 1: Even order Legendre polynomials and their first derivative with respect to
cos e, U = cos 0

PO(u) = 1 PO(U) = 0
P2(u) = 1/2 (3u2 - 1) P'2(u) = (6u)/2
P4(u) = 1/8 (354 - 30u 2 + 3) ' 4(u) = 1/8 (140u3 - 60u)
P6(u) = 1/16 (231u 6 - 315u 4 + 105u2 - 5) P 6(u) = 1/16 (1386u5 - 126003 + 210u)
Pg(u) = 1/128 (6435u8 - 12012u6 + 6930u4  p'(u) = 1/128 (51480U7 - 72072u5 + 27720u3

- 1260u2 + 35) - 2520u)

u = 1 (0 =) u = 0 (0 = n/2)
P.(* 1) = (* 1), P.(O) = 0 n : odd

' (:±: 1) = (+ 1)"+' x n(n+l)/2 P.(O) = (- 1)"/2 x [1.3.5..(n-1)/2.4.6..n] n even
P'.(0) = nP,1 (0)

As shown in section 3.1, the axial field at any point along the axis is

H,(Y,0) -- -~ kj (, +. 1 )In +[o?+(y+ Vjl/2

2 [+i + +(Y .p)2 1/2  (9
-- ~~+ ((19)_=7==_3 _7

-(:y-)lnla [' [a2 + (y ?]12J/2f

[ 1 +[1 +( p-)2]1/2 JJ

where Y = z/a, is the distance along the z-axis normalized to the inside radius
of the coil, see Figure 2. Equation 7 obtains when y = 0.
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Table 2: Error coefficients for uniform current density coils

11 1V C a2 _ C41]
C1 - -p7~ 2 -p 3 ~7  C4-+p- -?

F(a,P)E2(,1) - 13/2 3/2

1 PEta/1 (2[+3C2 +15C)
F(aR)E (a,) 1 24 ,.

- C3 /2 (2 +3C4 +15C 42)]

F(a,p)E6(a,p) 1... 1[C 1 2(8+12C 2 +15C 2 -7C 2 315C24
240P

- C3 2 (8 + 2 C4 +15 C2 -70 C4 + 31C 4)]

--xRE~R 1 312

F(a,P)E,(a,P) w 1 [C1 (16+24C 2 +3OC 2 +35C23+315C4
56)

- 2079C2 +3003C 2)

- C331 (16 +24 C
4 +30 4

2 + C +315C
4

- 2079C4 +3003C)]

(d 1 /dz).. 0 = (d 3H1/dz 3 )..o = (d2n'1 H/ Idz2 ')., o - 0

2.3 Field Uniformity for a Single Coil

Along the z-axis (u = 1, see Table 1), H, = 0 by symmetry and H, is given by
eqn. 16,

H,(,0) = Ho(1 + E2(a,1) + E4(a,)'+...). (20)

Further, at 0 = x/2, the axial field is

17



H(4,x/2) - (21)+ -5 E (a8) + (x8 6 8

128

For a simple solenoid, E2(ct, 0) is negative and the axial field decreases along
the z-axis, eqn. 20. However, the axial field increases radially from the centre,
eqn. 21. Close to the centre, where the E2(a, 0) term predominates, the axial
field deviation from H0 in the radial direction, H(t, x/2)/H o, is only half that of
the axial direction. Thus eqn. 20 can be used to determine a bound for the
homogeneity of the axial field within a sphere of radius y (< a) since the
inhomogeneity associated with any individual term is greatest in the z direction
(see also section 3.5).

It is now necessary to consider the uniformity of the axial field, in terms of
coil geometry a and 0, over a sphere of given radius as a percentage deviation
of the central field, that is

H(p/a,0) H' (22)

HO

where H" is obtained from eqns. 20 and 21 for 0 = 0 (p/a 1 = y) and 0 = x/2
(p/a 1 = t) respectively. The ratio H,(p/a1, 0)/H O has been evaluated for three
values of p/a,; 0.30, 0.50 and 0.707 (1/42). The results are shown graphically
in Figures 6 to 8. The terms in eqns. 20 and 21 were computed in double
precision up to and including the eighth order contribution. This allowed the
convergence of the series expansion to be examined. A selected number of
En,(a, P)V (n = 2, 4, 6, 8) results are given in Table 3; these are applicable to
both H(y, 0)/H O and H,(4, x/2)/H o. It is worth noting that the convergence of
the H,(4, n/2)/Ho series is better than that indicated by Table 3 because the
coefficients 1/2, 3/8, 5/16 and 35/128 were omitted to allow the results to
apply to both series.

The convergence of the series expansion (eqns. 20 and 21) is such that for
most values of a and 3, only the first two terms are required, depending on the
desired accuracy although dearly, more terms must be included as (p/a)
approaches unity. However convergence is slow when 0 is small, especially
when k > 05. As a worst case, when a = 1.01 and 5 = 0.1, the eighth-order
term E8(a, 0)48 contributes respectively 0.1% [0.05%], 3% [0.9%] and 21% [5.4%]
for (p/a 1) = 0.3, 0.5 and 0.707 in the series expansion of H(y, 0)/H 0 and
H (4, nr/2 ) /Ho.

As shown in Figures 6 to 8, for a given coil thickness a, the deviation of the
axial field from the central field decreases as the coil lengthens. Conversely, as
the coil thickness increases for a fixed 0, the deviation HZ/H decreases.
Furthermore, above 8 " 1.5 there is little change in H. as a function of a and
hence 0 appears to play the dominant role in determining field homogeneity.
(This case approaches that of an infinitely long single layer solenoid, see section
1.1.2.) For lower values of 0, the field homogeneity is sensitive to a. At

18



=1.0, =0.707, H.(F, x/2)1H0 varies by only 4% from 1.088 at a =1.01 to
1.053 at a =5.0. For =0.5, the variation is less than 2%.

a =io0i

1.5

0
z1.04- 20

1 02

0-98

rnS 09

0 402 0 06 0 10 1 14 6 18 0
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Figure 7: Deviation of axial fields H,(r/a1, xc/2) and H.(z/a1, 0) from the central field
H0 of a single coil as a function of a and 0 for p/a, = 0.5.
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Figure 8: Deviation of axial fields H,014a1, x1/2) and H,,(z/al, 0) from the central field
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Table 3: Selected values of EMja, P)V terms

px E2(%. N2 E4(%, PW E6((, P6 E8(q, Pg8

4= 0.30

1.01 0.1 -1.31E-1 1.4E-2 -1.4E-3 1.3E-4
1.0 -3.4 E-2 -3.OE-4 3.5E-5 4.5E-7
2.0 -5.4 E-3 -1.12-4 -1.1E-6 2.7E-9
3.5 -7.8 E-4 -7.6E-6 -5.7E-8 -3.4E-10
5.0 -2.0 E-4 -1.12-6 -4.7E-9 -1.8E-11

2.0 0.1 -7.2 E-2 4.9E-3 -3.5E-4 2.5E-5
1.0 -2.9 E-2 1.6E-4 1.2E-5 -1.7E-7
2.0 -7.4 E-3 -6.9E-5 7.42-8 9.2E-9
3.5 -1.4 E-3 -1.02-5 -4.8E-8 -1.2E-10
5.0 -4.1 E-4 -1.9E-6 -6.4E-9 -1.7E-11

5.0 0.1 -4.0 E-2 2.3E-3 -1.5E-4 1.1E-5
1.0 -1.9 E-2 1.3E-4 4.6E-6 -6.8E-8
2.0 -6.9 E-3 -1.6E-5 1.2E-7 2.8E-9
3.5 -2.2 E-3 -5.6E-6 -7.3E-9 4.1E-12
5.0 -9.1 E-4 -1.9E-6 -2.4E-9 -1.9E-12

4= 0.50

1.01 0.1 -3.6 E-1 1.E-1 -3.OE-2 7.9E-3
1.0 -9.4 E-2 -2.3E-3 7.4E-4 2.7E-5
2.0 -1.5 E-2 -8.1E-4 -2.3E-5 1.6E-7
3.5 -2.2 E-3 -5.7E-5 -1.2E-6 -2.OE-8
5.0 -5.6 E-4 -8.4E-6 -1.02-7 -1.1E-9

2.0 0.1 -2.0 E-1 3.8E-2 -7.5E-3 1 .5E-3
1.0 -8.0 E-2 1 .3E-3 2.7E-4 -1.OE-5
2.0 -2.1 E-2 -5.3E-4 1 .5E-6 5.4E-7
3.5 -3.9 E-3 -7.9E-5 -1.OE-6 -7.1E-9
5.0 -1.1 E-3 -1.4E-5 -1.4E-7 -1.OE-9

5.0 0.1 -1.1 E-1 1.75E-2 -3.3E-3 6.5E-4
1.0 -5.1 E-2 1.0 E-3 9.8E-5 -4.02-6
2.0 -1.9 2-2 -1.3 2-4 2.5E-6 1.7E-7
3.5 -6.2 2-3 -4.3 E-5 -1.6E-7 2.5E-10
5.0 -2.5 2-3 -1.5 E-5 -5.1E-8 -1.1E-10

4= 0.707

1.01 0.1 -7.3E-1 4.42-1 -2.4E-1 1.32-1
1.0 -1.9E-1 -9.4E-3 5.9E-3 4.3E-4
2.0 -3.02-2 -3.2E-3 -1.8E-4 2.52-6
3.5 -4.3E-3 -2.3E-4 -9.7E-6 -3.2E-7
5.0 -1.1E-3 -3.3E-5 -8.02-7 -1.7E-8
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C9 P E2(%, Me E4(%, PW E6(%, PW E844r P3)4!

4= 0.707 cont.

2.0 0.1 -4.0E-1 1,5E-1 -6.OE-2 2.4E-2
1.0 -1.6E-1 5.1E-3 2.1E-3 -1.6E-4
2.0 -4.IE-2 -2.1E-3 U.E-5 8.7E-6
3.5 -7.9E-3 -3.2E-4 -8.2E-6 -M.E-7
5.0 -2.3E-3 -5.8E-5 -1.1E-6 -1.7E-8

5.0 0.1 -2.2E-1 7.0E-2 -2.6E-2 L OE-2
1.0 -1.OE-1 4.0E-3 7.8E-4 -6.4E-5
2.0 -3.8E-2 -5.1E-4 2.OE-5 2.7E-6
3.5 -1.2E-2 -1.7E-4 -1.2E-6 3.9E-9
5.0 -5.1E-3 -5.9E-5 -4.1E-7 -1.8E-9

If the coil is to be used as a calibration coil providing a known uniform field
then an important factor is the area over which one requires field homogeneity
For example, if the field homogeneity is required over a circular region of 1.0 to
2.0 m diameter, then dearly a large coil is required and in order to minimize
weight and costs, it is desirable to midnimize a and P3. As an example, consider
a coil with a radius of 1.0 m, coil thickness of 1 cm (a = 1.01) and a length of
20 cm (P3 = 0.1). (If a = 1.5, then the coil thickness is 50 cm which leads to a
massive coil.) The field homogeneity at radial distances away from the centre
of the coil, H.t n/2)/H0 , is as large as 7% at a distance of r = 30 cm and
deteriorates to 23% and 64% at 50 cm and 71 cm away from the coil centre
respectively; see Table 4. The final coil dimensions would depend on the
required field homogeneity and acceptable tolerances.

Table 4: Field homnogeneity for thin cross-section coils of internal radius 1.0 m

a = 1.01, P = 0.1 (coil thickness, 1 cm; coil length, 20 cm)

rna, r H2 (E, irI2)/H0  H, (y, 0)/H 0

0.3 30 cm 1.071 (+ 7%) 0.882 (-12%)

05 50 cm 1.234 (+ 23%) 0.723(-28%)

0.707 71 cm 1.637 (+ 64%) 0593 (- 41%)

a =1.01, P = 0.4 (coil thickness, 1 cm; coil length, 80 cm)

r/a, r 11, (f n/2)/H0) H. (y, 0)/H 0

0.3 30 cm 1.052 (+S5%) 0.907 (- 9%)

0.5 50 cm 1.159 (+ 16%) 0.768 (-23%)

0.707 71 cm 1.366 (+ 37%) 0.602 (-40%)
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2.4 Hart's Method for Distributed Circular Currents

Figure 9 depicts a distributed circular current whose positive flow occupies the
full rectangular area shown in the shaded region. The coordinates are
normalized to the coordinate P(O, h) where h is the perpendicular distance from
the z-axis to a point P. For a distributed circular current, Hart [21 obtains the
following expression for the radial and axial magnetic fields BR and Bz
respectively,

BRt= k~h RZcos ci(200ARAZ Ac)
R z D L+ R2 + Z 2 -2Rcos a]3/2  (23)

- kJhSR

B= - kJhE E (R2 -Rco s a )(200ARAZA a )

R Z a [I+R 2 +Z2 -2Rcosct ]3 /2  (24)

kJhSz

where B is in tesla, distance is in metres, I is the current density in A rn2 and
k = 10-9 tesla m A71. SR and Sz apply to a uniform current distribution which
occupies the entire shaded rectangular area of Figure 9b from the origin
diagonally outward to point Q. The angular increment Aa was chosen to make
L = x/Aa integral for the semicircle where L is the number of terms in the
summation T... The summation is multiplied by 2 to obtain the required
summation around the circle and a is the angle taken to the centre of its
corresponding increment. SR and Sz are numerical approximations to the
intractable triple integrals

which have been evaluated digitally and presented in tabular form for
incremental values of Z and R, see Hart's tables I-A, B and C [2].
Unfortunately, four-point interpolation may be necessary to deduce the SR and
Sz functions at the required R, Z coordinates from the values given in Hart's
tables.
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Figure 9: Distributed circular current: (a) dimensionless coordinates,
(b) dimensionless coordinates normalized to h, i.e. z = Zh, r = Rh, dz = h dZ and
dr= h dR. The origin 0 is taken at the point at which h meets the z-axis.
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Figure 10: A distributed circular current of rectangular cross section in terms of
(a) dimensional coordinates, and (b) normalized coordinates.
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For current distributions contained in the typical coil distribution shown in
Figure lOa, eqns. 23 and 24 can be modified, (see Fig. lob), resulting in

BRZ - kJh(SD - SB - SC + 5 A)R,Z (25)

where the shaded regions in Figure 10b are subtracted from SD (contribution of
area DHOF). However, the contribution from area AGOE has been subtracted
twice, resulting in the + SA term in eqn. 25. Hart's method was used to
compute the ratio of the axial field to the central field at various radial
distances from the centre of a coil with a = 1.01, a, = 100 cm and coil length
2b = 40 cm, 100 an and 200 cm. The results are shown in Figure 11 and a
comparison of this technique with Garrett's series expansion approach is
summarized in Table 5. The agreement is good except for Hart's value at
h = 30 cm, 03 = 0.5 which is too high. The error associated with this value
arises from the two 4-point interpolations required to extract the Sz integral
from Hart's tabulated values. Whilst both techniques give similar results, the
series expansion approach is much faster because no numerical integrations are
required and the relatively simple EQ(a, 0) error coefficient functions are readily
computed. Accuracy and speed are also improved because there is no need to
resort to tables or interpolations. Furthermore, as discussed in the following
section, the series expansion approach easily lends itself to the computation of
fields from a combination of coaxial coils. Thus the series expansion approach
is far superior for numerical modelling studies.

Table 5: Comparison of Hart's numerical integration procedure with Garrett's series
expansion method

H2 (E, n/2)/H o for a coil a, = 100 cm, a2 = 101 cm, a = 1.01 and coil lengths
2b = 40 cm (P = 0.2), 100 cm (P = 0.5) and 200 cm (ft = 1.0)

10 = 0.2 P3 = 0.5 03 = 1.0

Garret Hart Garret Hart Garret Hart

0.7 1.56 1.55 1.286 1.279 1.089 1.087"
h = 70cm

= 0.5 1.21s  1.212 1.13, 1.13, 1.04f 1.044
h = 50cm

= 0.3 1.067 1.086 1.044 1.097 1.017 1.023
h = 30cm

Obtained by linear interpolation from Figure 11
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Figure 11: Deviation of axial field H.(h, x12) from central field Ho computed from
Hart's tables of Sz functions for coil length 40 cm, 100 cm and 200 cm.

27



3. Fields for Two Coaxially Displaced Solenoids

3.1 Introduction

Using the superposition principle and symmetry arguments, the axial field
along the coil axis, H.(z, 0), outside or within a coil or between two or more
coils separated by a gap can always be expressed as a sum of central fields.
For example, the end field H,(z = Pal, 0) of any coil is half the central field of a
coil twice the length. The field H,(y, 0) for y > P, i.e. external to the coil can be
computed from the central fields of two sub-coils into which the original coil is
partitioned, see Figure 12. Normalized distances are used for the sub-coils.
Sub-coil A has geometry (a, P + y) and sub-coil B has geometry (a, y - P). Thus

A B

H,(y,0) - H0  H0  (26)

where from eqn. 11, the central fields of sub-coils A and B are given as

H - j,%alF(a, +y) (27)
Ho' "h~alF(ay- )

and thus

[H.(y,0)]Y = H0 F(ap +y) -F(ay - 03) (28)2F( ,p )

where H0 is the central field H,(O,0) of the original coil with geometry (a, P), i.e.
jeIaIF(a, P). If the axial field is required at a point along the axis which lies
within the coil boundary, then eqn. 10 can be used to modify the term F(ci, y -
0) appearing in eqn. 28, see Figure 13. Thus

[H(¥,0)I = Ho F(a,p +y) +F(aI -y) (29)
Z'( < 7 H. 2F(ap,)

From eqn. 8, eqns. 28 and 29 reduce to eqn. 19.
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Sub coil
A

1-2(A3.zVal)I I

i 2 (z/a 1 -A)

Sub coil
IB

Figure 12: Partitioning of mnain coil into sub coil A and sub coil B allow~s the external
field H,(z, 0) to be evaluated from the central field of sub coils A and B. y=z/a1.

3.2 Axial Fields from Multiple Coils

The previous analysis by symmetry and superposition arguments can also be
applied to more than one coil, for example, a pair of coils [1]. The
homogeneity between a pair of coils can then be analysed by the Legendre
series expansion technique.
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Figure 13: Partitioning of min coil into sub coil A and sub coil B allow~s the internal
field H,(z, 0) to be evaluated from the central field of sub coils A and B. y = z/a1.

For the pair of coils described in Figure 14, the axial field along the axis is

H,(y,O) - ca Fa2 0+y Fag-)(0

where =g/2a,, FRa, C) is defined by eqn. 8 and H2(- y, 0) = H2(y, 0). The
field at the centre of the gap can then be expressed as
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H2,(O,O) - jk).a, [F (a,2 0 ., j) -F (aps)J (31)
+ * j~t~,

Equation 31 is equivalent to a coil of length 403 + 2,from which a coil of length
2,has been subtracted.

G/ai, zfai

F -I

F I F(a,2A+ g /2a, z all

I G a

139 g/2a,

+ F(a 2A + /2a, -zal)
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The deviation of the axial field from the central field, H(y, O)/H,(OO), of a
split coil pair as one moves away from the centre of the gap can be computed
from eqn. 30. The results for a fat coil (oE = 3, 0 = 1.0) and a thin filamentary
loop coil (a = 1.01, P = 0.1) are shown in Figures 15, 16 and 17, where the gap
width parameter P. is varied from zero to 2.0 (gap width four times the internal
radius). Figures 15 and 16 show two different coils with the same P. settings.
Figure 17 focuses on the homogeneous region of Figure 16. In Figure 15, there
are certain gap settings (P - 0.25) where the field homogeneity along the axis is
within a few percent of H0 out to z/a 1 = 1.0. A similar result applies to the
"filamentary" loop coil, except that the region of field homogeneity holds for a
different P. value and does not extend out to z/a, = 1.0 as for the fat coil. For
example, for the thin foil, Figure 17 reveals that the optimum field homogeneity
is obtained at about P. = 0.45 up to z/a, = 0.4 (H.(y, 0)/H 0 = 0.9982). If a =
1.01, P = 0.1 and a, = 100 cm, then the optimum gap setting is approximately 90
cm and z = 40 cm for field homogeneity to within 0.2% of the central field.
Figures 15 and 16 also show the axial field deviation for zero gap width. Here
the field drops off monotonically away from the coil centre.

The axial field within a region of space around the centre of a single coil is
less uniform along the z axis (0 = 0) than radially outwards (0 = 7/2), see
section 2.3 and Table 4. If the same conclusion applied to a pair of coils, then
eqn. 30 and Figures 15 to 17 can be used to quantitatively set the upper limits
of field homogeneity within a spherical region about the centre of a split coil
pair. However this is not always the case and depends on the gap separation
and size of coils. Choosing the appropriate P. for good axial field uniformity
along the z axis (Pg = 0.45, Fig. 17), eqns. 30 and 31 are evaluated and the
uniformity H.(z/al, 0)/H O for certain z/a, is shown in Figure 18. (Here the
values indicate the percentage deviation from H0 at r/a, and z/a = 0.3, 0.4, 0.5,
0.6, 0.8. The deviations in brackets are those obtained from the Legendre
expansion technique, see section 3.3). Note that the individual coils (a = 1.01,
P = 0.1) are the same as the example given in Table 4 and by comparison, the
split coil pair offers better field uniformity by more than an order of magnitude
up to z/a, = 0.5. For example at z/a1 = 0.5, the deviation from the central field
is 28% for a single coil compared to 2% for the split coil pair and from Figure 7
at a = 1.01, a 3 value of 1.4 is required to achieve 2% single coil uniformity.
This implies a coil length of 2.8 m as opposed to 0.2 m. There are several other
interesting features revealed in Figure 18. The Legendre expansion technique
which includes terms up to eighth order yields results in excellent agreement
with the superposition expressions (eqns. 30 and 31). The discrepancy at larger
z/a1 arises from the contributions of higher order terms. For example, the
eighth-order term accounts for 10% of the computed H,(y = 0.8, 0)/H O value
(086480). Another feature is that the field uniformity in the 0 = 7r/2 plane is
also improved by using a pair of coils rather than a single coil (see Table 4).
The field uniformity for the coil pair is better in the z direction than the 0 = x/2
plane. Similarly, for aE = 3.0, j3 = 1.0 (Fig. 15), the same trend obtains at 03, =

0.2 but reverses at P5 = 1.0.

32



20- 2-0

o a =3-0

0
-:'14-
m

N

1-2-

1.0-

008

0-0 0-2 0-4 0-6 0-8 1-0 1-2 1-4 1[6 1[8 2-0

Figure 15.; Deviation of axial field H.(z/a1, 0) from field at gap centre for a coil pair
(a = 3.0,f3 1.0).
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Figure 18: Regions of field uniformity H(p/a1, 0)/H0, 0 = 0, z/2 for a split coil
a = 1.01, 0 = 0.1, PS = 0.45.

3.3 Fields Within a Central Region for a Pair of Coils

The Legendre expansion technique is combined with the superposition principle
for multiple coils in order to obtain inhomogeneities in the central region of the
gap formed by a pair of coaxially displaced coils. Thus the expressions for the
axial fields Hz(y, 0) and H,(4, x/2), eqns. 20 and 21, will contain for each term a
corresponding term representing the compensating coil contribution which for
the pair of coils is the imaginary gap or void coil. There is a degree of
freedom in choosing the location, inner and outer radius and relative current
density of the compensation coil. However, the number of terms in the series
expansion of the field generated by the main coil that can be cancelled by the
terms arising from the compensating coil is determined by the number of
independent variables of the compensating coil. Thus for the separated coil
pair in Figure 14, the superimposed "negative" coil produces the gap (upper
and lower two sub-coils in Fig. 14) and since the main coil and compensating
coil have the same a, the only free variable is P., the gap separation.
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Consequently, only the E2(a, P) term in the series expansion may be cancelled
leading to a fourth-order compensated coil. On the other hand if the main coil
is configured to have a notch either on the inside or outside of the coil winding,
positioned symmetrically about the mid-plane, then both a. (a the depth of the
notch) and Pg (a the length of the notch) may be varied. Consequently, both
the E2(a, P) and E4(a, P) terms may be cancelled by choosing the appropriate
(as, P.) in order to achieve even higher field homogeneities. This configuration
leads to a sixth-order compensated coil [6].

Let a, P represent the geometry parameters for the main coil including the
gap as shown in Appendix A, (unlike Fig. 14) and let a , P8, refer to the
compensating coil (gap). Then, from eqns. 20 and 21,

H.01,0) - joal (F(a, ) -F8 (af3,)

" [FoE 2(a ,) -FE 2(a,P,,)W

" [FoE4(a'p) - FE 4(aS',)]y4  (32)

" [F0E6(a',) -FE 6 (a,,P8)W

" [F0oE(aP,) - FE E(a,,P8)]

H.(t,x/2) --jc .aj(F(aP)-F,(a,,P,)

_ [F0E2(at3) -FE 2 (J 5 )]M2

+ 3 [FoE4(aP ) - Fj4(aSP8)] 4
3(33)

. [F0E6(a,) -FSE 6 (aSP8)1e6

+ 3)-FSES(a )Jt8
128

where FiE.(o4, P3,) is the product of the field factor (eqn. 8) and eqn. 18 (see
Table 2) both evaluated at %, Pi. If FoE2(a, f3) = F5E2(ag, P.), the main coil will
be compensated to fourth order. This defines a Helmholtz coil pair.

A graphical and hence approximate solution can be obtained by plotting
FE2(a, P) as a function of P for various values of a. The results are shown in
Figures 19 to 22 which can be readily used for determining the correct gap
widths. The expanded left hand portion of Figures 19 and 21 appear in
Figures 20 and 22 respectively and are required for determining the correct P.
value for fourth order compensation. For example, for a = 3, 0 = 2,
FE2(3, 2) = - 0.153 - FE2(3, 0.193); thus a gap setting P. = 0.193 will yield the
maximum central homogeneity. It is evident from Figures 19 to 22 that for a
given a, the further away that P is from the minimum of the FE2(a, 0j) curve,
then the smaller the required A5, value for fourth-order compensation. This
leads to fat coils with a narrow spacing (P. << j) coils. On the other hand, if P
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is chosen close to the minimum then P.~ is a large proportion of 13 and this
configuration gives rise to thin pancake-type coils which are lighter and more
economical than the fat (P3, << 1) coils. As an example, let ot = 1.01 and
a, =100can. When = 1.0, FE2(a, 0) - 6.63 x103and from Figure 224,Sis
0.20, FE2(mz PS,) = - 6.65 x 10-3; this leads to the coil configuration shown in
Figure 23a. If, however, 13 = 0.65, FE2(a, Od, = - 1.00 x 10.2 then 1 =0.39 and
one obtains the configuration described in Figure 23b.
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Figure 19 FE2(a, 13) as a function of 13 for a = 2.01, 1.05, 1.1,12.2,1.3, 1.4,12.5,12.7,
2.0, 2S, 3.0, 4.0 and 5.0.
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Figure 21: FE2(a, 0) as a fu~nction of 0 for a = 1.01, 1.02, 1.03, 1.04 and 1.05.
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Figure 23: Fourth order comnpensated coils (scale 1:32).

Another interesting feature displayed by Figures 19 and 21 is that for small
values of a (!5 1.2) the minimum FE2(1 0) value occurs at - 0.5. Correct
compensation at the FE2( ed, ) minimum implies P - P. This leads to the
approximate result that for Helmholtz coils, the gap width is equal to the
internal radius of short coils. As a increases, the FE2(ct, 0) minimum occurs at
larger 5 values. At at = 5.0, the FE2(a, 0) minimum obtains at 0i = 0.8 (Ps - A)
and the required gap width for Helmholtz coils is 1.6aj. Figures 19 and 21 are
also useful for determining the minimum values of P for a given c to allow for
fourth-order compensation. If P < 0.8 for a coil having a = 5.0, then fourth-
order compensation is not possible.

42



3.4 Numerical Computation of Compensated Fourth
Order Coils

In the previous section, computer generated plots were used to provide
graphical solutions for choosing the coil parameters 0 and P. for a given a.
However, it is also useful to automatically compute the correct coil parameters
for obtaining compensated coils. This allows a more comprehensive study to
be undertaken and is also useful for tabulating error limit tables (see section
3.5).

3.4.1 The Newton-Raphson Method for Determining J8

To compute H(y, 0) and H,(4 , x/2) (eqns. 32, 33) to fourth-order, it is necessary
to solve (see Table 2)

1 - /2 W 1 1I2 (4
(I W 2)3/2 j (1 -[

for Pg in terms of a and 0 (a = a8 for Helmholtz coils). Equation 34 cannot be
solved analytically and so must be solved numerically using, for example, the
Newton Raphson technique for the solution of nonlinear equations [7]. This
technique is well-suited to this case because the derivative of the function can
be expressed analytically. However, because of the geometry of the method,
the Newton-Raphson method can be erratic in regions where the function has a
small slope.

The Newton-Raphson method attempts the solution of the equation F(x) = 0
where if x i is an approximation to x, then a better approximation is

F(x) (35)
xi 1 , xi - F / (x j)

or

Ax1F'(x) + F(xi) = 0 (36)

where F'(x i) is the first derivative of F(xi), in this case, FoE2(a, 1) - FgE2(a, Pg).

If Axi (= xj+1 - x,) is less than a given tolerance, i.e. Axi approaches zero, then xi
is an approximate solution.
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3.5 Error Limits for Helmholtz Coils

As pointed out previously, the terms in eqns. 16 and 17 have their largest value
when 0 = 0, P3(1) = 1, and the maximum value of the terms for the axial field is
given by eqn. 20 or 32. When the second term in eqn. 32 is zero, there remains
only the fourth order term and the deviation from the central field H/H o is

H,(Y.o) 1 + FoE4(c,) _FgE4( ) fr (37
1 +A-?+...

where

Ho -jc a [Fo(,P) - F,(,PdI)I (38)

and if A is the percentage change in H.(y, 0) from Ho then

al .,A.. /4 ( (39)

determines how far from the origin one can move before the field deviates by
more than a given percentage A. This assumes that sixth-order and higher
contributions are negligible. The evaluation of z/a, in eqn. 39 is readily
determined using the Newton-Raphson method to automatically compute the
required P. for cancellation of the second order term. Some sample
computations for "short" and "long" coil pairs are presented in Table 6. Thus,
depending upon the acceptable errors, a significant portion of the coil may be
used to provide an approximately uniform magnetic field for calibration
purposes.
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Table 6: Axial field error limits for fourth-order coils

a P P, r/ca E,/crn 0.1% 1.0% 5.0%

1.0 0.197 200 39.4 0.201 0.357 0.5340.6 0.415 120 83 0.174 0.309 0.463

1.0 0.202 200 40.4 0.202 0.359 0.5370.6 0.424 120 84.8 0.173 0.312 0.467

1.0 0.207 200 41.4 0.203 0.361 0.540
0.6 0.433 120 86.6 0.173 0.315 0.471

1.0 0.221 200 44.2 0.206 0.366 0.547
0.6 0.454 120 90.8 0.181 0.322 0.481

1.2 0.236 240 47.2 0.241 0.428 0.640
0.8 0.433 160 86.6 0.212 0.377 0.564

1.3 0.279 260 55.8 0.265 0.472 0.7060.8 0.543 160 108.6 0.234 0.416 0.623

1.5 0.363 300 72.6 0.321 0.571 0.8530.9 0.666 180 133.2 0.288 0.513 0.767

I and 0. refer to overall coil length including gap, and gap width

respectively for an inner radius of 100 cm.

* z/a1 determines how far from the origin one can move before the field
deviates by more than the given percentage.

3.6 Axial Fields for Uncompensated Coil Pairs

As shown in Figures 15 to 17, it is possible to forgo maximum field
homogeneity for the sake of extending z/a, such that the deviation from the
central field is within certain error limits. For example, the Og = 0.45 curve in
Figure 17 extends further out than the A. = 0.4 curve, etc. It is thus desirable
to evaluate H.(y, 0) and H.(4, x/2) for a coil pair when the second-order term
has not been cancelled out, i.e. evaluate eqns. 32 and 33. A Fortran source
code listing for the evaluation of these equations is described briefly in
Appendix A; the programme also generates two plot files for graphing
H(y, 0)/H O and H,(4, x/O)/H o and a scratch file listing the second-, fourth-,
sixth- and eighth-order contributions so that the convergence of eqns. 32 and 33
can be monitored. Thus one can readily examine the deviation of the axial
field from the central field, both radially and along the z-axis, for a range of 09
values, including the one required for fourth-order compensation.
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3.6.1 Experimental Design Example

As an example, consider a split coil with two adjustable lengths where a = 1.01
and [3 = 0.50 and 0.55. The computed axial field deviations H(z/a1, O)/H o and
H(r/al, K/2)/H for various gap settings are shown in Figures 24 and 25. As
is evident from these graphs, as P. approaches 0.5, the correct fourth-order
compensation coil setting, better field homogeneity is obtained. With regards
to HW(r/al, x/2)/H, it is also dear from these figures that other values of P. still
give a very small deviation (albeit a larger one) from the central field at far
greater displacements from the gap centre. There is also very little variation
between the results shown in Figures 24 and 25 and those obtained from a =

1.005, 1.02 and 1.03 which suggests that it is advantageous to use coils with
small a to allow for easier winding and less overall weight. The use of low a
values becomes important when field homogeneity is required over a large
area.

In Figure 24, the axial field HW(r/a 1, n/2) at P. = 0.35 does not deviate by more
than 1% from H0 for displacements of up to 60% of the internal radius of the
coils. The axial field H-(z/al, 0) is also uniform to within 1% of H0 for
displacements of up to 0.15a1 each way along the z-axis. Thus for a standard
internal radius of 100 cm the field is expected to be uniform to within 1% of H0
for a region of space bounded by a disc (sensor coil) having a radius of 60 cm
and a thickness of 30 cm. This was verified experimentally. If better field
uniformity is required over a smaller region of space, then one can increase the
size of the gap using the original pair of coils (see Fig. 25) where 13 has now
been increased from 0.5 to 0.55 and P. = 0.40. Now, Hz(r/a 1, x/2) [Hz(z/al, 0)]
is uniform to within 0.2% of H0 for displacements up to r/a1 = 0.4 [z/a 1 = 0.11.
Tables 7 and 8 contain the information presented in Figures 24 and 25 in tabular
form to allow for better quantitative estimates of field uniformity as these coil
configurations will be used experimentally.

The accuracy of the uniformity can be checked from the convergence of the
series expansion given by eqns. 32 and 33. The even error coefficients
FoE.(a, 1) - FE,(a, 13,) up to eighth order for the coaxially displaced coil pairs
given in Figures 24 and 25 are presented in Table 9 for 3. = 0.35, [3 = 0.5 and P.
= 0.4, 13 = 0.55. For a = 1.01, 1 = 0.55, 08 = 0.4, the results in Table 9 show that
up to r/a, = 0.4 the series has converged rapidly and that it is not necessary to
go beyond the fourth-order term. On the other hand, for a = 1.01, 03 = 0.5, 13, =

0.35 it is necessary to go beyond the fourth-order term to obtain convergence
for r/a1 < 0.65, z/a 1 < 0.65. From Table 7, H(0.65, ic/2) = 0.97 H0 and from
eqn. 33 and Table 9, the eighth-order contribution is 0.98% of the total H,(0.65,
x/2/H o. Since higher order terms contribute less, the uniformity of H(r/al,
n/2)/H o to better than 3%, for r/a1 up to 0.65, is not affected by truncating the
series at the eighth-order term.
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Table 7: Axial field deviations from the central field at various gap settings for
a = 1.01, 0 = 0.50

H.(rlal, x/2)/Ho

Ps = 0.48 P, = 0.45 As = 0.40 P, = o.3 P = o 30 0 = 022 i,

1.0001E+00 1.0001E+00 1.0003E+00 1.0004E+00 1.0005E+00 1.0007E+00 0.05
1.0002E+00 1.0005E+00 1.0010E+00 1.0015E+00 1.0021E+00 1.0029E+00 0.10
1.0003E+00 1.0010E+00 1.0022E+00 1.0034E+00 1.0046E+00 1.0065E+00 0.15
1.0003E+00 1.0015E+00 1.0036E+00 1.0058E+00 1.0080E+00 1.0115E+00 020
9.9979E-01 1.0017E+00 1.0050E+00 1.0085E+00 1.0121E+00 1.0177E+00 0.25
9.9852E-01 1.0013E+00 1.0062E+00 1.01132+00 1.0166E+00 1.0251E+00 0.30
9.9599E-01 9.9985E-01 1.0066E+00 1.0138E+00 1.0212E+00 1.0333E+00 0.35
9.9158E-01 9.9668E-01 1.0057E+00 1.0154E+00 1.0255E+00 1.0420E+00 0.40
9.8444E-01 9.9097E-01 1.0026E+00 1.0152E+00 1.0286E+00 1.0508E+00 0.45
9.7352E-01 9.8164E-01 9.9631E-01 1.0123E+00 1.0295E+00 1.0587E+00 0.50
9.5745E-01 9.6726E-01 9.8524E-01 1.0052E+00 1.0270E+00 1.0647E+00 0.55
9.3446E-01 9.4602E-01 9.6753E-01 9.9192E-01 1.0191E+00 1.0674E+00 0.60
9.0237E-01 9.1558E-01 9.4069E-01 9.6991E-01 1.0033E+00 1.0644E+00 0.65
8.5837E-01 8.7297E-01 9.0147E-01 9.3577E-01 9.7624E-01 1.0530E+00 0.70
7.9901E-01 8.1443E-01 8.4573E-01 8.8511E-01 9.3345E-01 1.0292E+00 0.75
7.1997E-01 7.3526E-01 7.6816E-01 8.1221E-01 8.6912E-01 9.8770E-01 0.80
6.1591E-01 6.2958E-01 6.6207E-01 7.0979E-01 7.7574E-01 9.2180E-01 0.85
4.8031E-01 4.9010E-01 5.1903E-01 5.6857E-01 6.4365E-01 8.2257E-01 0.90
3.0518E-01 3.0786E-01 3.2855E-01 3.7688E-01 4.6063E-01 6.7863E-01 0.95
8.0824E-02 7.1856E-02 7.7606E-02 1.2014E-01 2.1128E-01 4.7554E-01 1.00

H2(z/al, O)/H 0

Is =0.48 ps = 0.45 P, = 0.40  
pg 

= 0.35 s, = 0.30 s = 022 z/a,

9.9987E-01 9.9973E-01 9.9947E-01 9.9921E-01 9.98952-01 9.9853E-01 0.05
9.9941E-01 9.9883E-01 9.9782E-01 9.9678E-01 9.9574E-01 9.9410E-01 0.10
9.9838E-01 9.9708E-01 9.9484E-01 9.9255E-01 9.9024E-01 9.8664E-01 0.15
9.9641E-01 9.9413E-01 9.9023E-01 9.8624E-01 9.8226E-01 9.7606E-01 0.20
9.9303E-01 9.8954E-01 9.8359E-01 9.7756E-01 9.71542-01 9.6226E-01 0.25
9.8772E-01 9.8282E-01 9.7453E-01 9.6616E-01 9.5787E-01 9.4516E-01 0.30
9.7993E-01 9.7349E-01 9.6263E-01 95176E-01 9.4105E-01 9.2475E-01 0.35
9.6920E-01 9.6112E-01 9.4757E-01 9.3410E-01 9.2093E-01 9.0105E-01 0.40
9.5516E-01 9.4540E-01 9.2912E-01 9.1305E-01 8.9746E-01 8.7413E-01 0.45
9.3760E-01 9.2615E-01 9.0716E-01 8.88S4E-01 8.7060E-01 8.4406E-01 0.50
9.1653E-01 9.0339E-01 8.8169E-01 8.6052E-01 8.4028E-01 8.1075E-01 0.55
8.9218E-01 8.7730E-01 8.5274E-01 8.2889E-01 8.0625E-01 7.7386E-01 0.60
8.6502E-01 8.4819E-01 8.2033E-01 7.9329E-01 7.6785E-01 7.3245E-01 0.65
8.3573E-01 8.1642E-01 7.8423E-01 7.5289E-01 7.2367E-01 6.8465E-01 0.70
8.0511E-01 7.8228E-01 7.4372E-01 7.0595E-01 6.7110E-01 6.2713E-01 0.75
7.7398E-01 7.4576E-01 6.9727E-01 6.4937E-01 6.0574E-01 5.5446E-01 0.80
7.4298E-01 7.0626E-01 6.4201E-01 5.7805E-01 5.2057E-01 4.5820E-01 0.85
7.1235E-01 6.6220E-01 5.7313E-01 4.8399E-01 4.0497E-01 3.2587E-01 0.90
6.8153E-01 6.1054E-01 4.8312E-01 35532E-01 2.4350E-01 1.3962E-01 0.95
6.4881E-01 5.4614E-01 3.6078E-01 1.7499E-01 1.4403E-02 -1.2537E-01 1.00

49



Table 8: Axial field deviations from the central field at various gap settings for
cx = 1.01, 3 = 0.55

H.(r / al, x /2) /H o

,.50 = ,0.45 , =0.40 p, = .3 =.330 P = o.22 rg,/

9.9989E-01 1.0000E+00 1.0001E+00 1.0003E+00 1.0004E+00 1.0006E+00 o.os
9.9954E-01 1.OOOOE+00 1.0005E+00 1.0011E+00 1.0016E+00 1.0025E+00 0.10
9.9885E-01 9.9995E-01 1.0011E+00 1.0023E+00 1.0036E+00 1.0055E+00 0.15
9.9762E-01 9.9961E-01 1.0017E+00 1.0039F+00 1.0061E+00 1.0097E+00 0.20
9.9562E-01 9.9875E-01 1.0021E+00 1.0056E+00 1.0091E+00 1.0149E+00 0.25
9.9247E-01 9.9702E-01 1.0019E+00 1.0070E+00 1.0123E+00 1.0208E+00 0.30
9.8770E-01 9.9396E-01 1.00072+00 1.0078E+00 1.0153E+00 1.0274E+00 0.35
9.8069E-01 9.8892E-01 9.9786E-01 1.0074E+00 1.0175E+00 1.0341E+00 0.40
9.7065E-01 9.8111E-01 9.9260E-01 1.0050E+00 1.0182E+00 1.0403E+00 0.45
9.5659E-01 9.6948E-01 9.8383E-01 9.9956E-01 1.0165E+00 1.0454E+00 0.50
9.3725E-01 95270E-01 9.7016E-01 9.8964E-01 1.0110E+00 1.0481E+00 0.55
9.1112E-01 9.2909E-01 9.4981E-01 9.7341E-01 9.9983E-01 1.0470E+00 0.60
8.7630E-01 8.9652E-01 9.2046E-01 9.4846E-01 9.8064E-01 1.0399E+00 0.65
8.3048E-01 8.5236E-01 8.7917E-01 9.1165E-01 9.5022E-01 1.0240E+00 0.70
7.7088E-01 7.9330E-01 8.2221E-01 8.5893E-01 9.0443E-01 9.9554E-01 0.75
6.9412E-01 7.1530E-01 7.4490E-01 7.8515E-01 8.3788E-01 9.4950E-01 0.80
5.96172-01 6.1337E-01 6.4137E-01 6.8376E-01 7.4368E-01 8.7942E-01 0.85
4.7221E-01 4.8142E-01 5.0432E-01 5.4649E-01 6.1304E-01 7.7698E-01 0.90
3.1652E-01 3.1206E-01 3.2477E-01 3.6305E-01 4.3490E-01 6.3151E-01 0.95
1.2235E-01 9.6354E-02 9.1663E-02 1.2064E-01 1.9540E-01 4.2958E-01 1.00

H2(z/a, O)/H o

p, = 0.50 p = 0.45 g = 0.40 p, = 0.35  , = 0.30 Ps = 0.22  z/a,

1.0002E+00 9.9996E-01 9.9970E-01 9.9944E-0", 9.99172-01 9.9875E-01 0.05
1.0007E+00 9.9974E-01 9.9873E-01 9.9768E-01 9.9663E-01 9.9496E-01 0.10
1.0013E+00 9.9912E-01 9.9686E-01 9.9455E-01 9.9221E-01 9.8855E-01 0.15
1.0015E+00 9.9770E-01 9.9377E-01 9.8974E-01 9.8569E-01 9.7937E-01 0.20
1.0008E+00 9.9503E-01 9.8901E-01 9.8289E-01 9.7678E-01 9.6728E-01 0.25
9.9873E-01 9.9054E-01 9.8213E-01 9.7362E-01 9.6517E-01 9.5213E-01 0.30
9.9453E-01 9.8370E-01 9.7625E-01 9.6156E-01 95060E-01 9.3383E-01 0.35
9.8764E-01 9.7399E-01 9.6016E-01 9.4637E-01 9.3284E-01 9.1232E-01 0.40
9.7760E-01 9.6102E-01 9.4435E-01 9.2784E-01 9.1177E-01 8.8760E-01 0.45
9.6409E-01 9.4456E-01 9.2505E-01 9.0585E-01 8.8729E-01 8.5968E-01 0-0
9.4707E-01 9.2458E-01 9.0223E-01 8.8035E-01 85934E-01 8.2849E-01 0,55
9.2682E-01 9.0132E-01 8.7601E-01 8.5133E-01 8.2777E-01 7.9376E-01 0.60
9.0403E-01 8.7528E-01 8.4663E-01 8.18672-01 7.9216E-01 7.5477E-01 0.65
8.7989E-01 8.4721E-01 8.1428E-01 7.8199E-01 7.5156E-01 7.1005E-01 0.70
8.5613E-01 8.1811E-01 7.7903E-01 7.4036E-01 7.0414E-01 6.5693E-01 0.75
8.3508E-01 7.8909E-01 7.4056E-01 6.9193E-01 6.4669E-01 5.9097E-01 0.80
8.1971E-01 7.6130E-01 6.9783E-01 6.3342E-01 5.7398E-01 5.0524E-01 0.85
8.1365E-01 7.3568E-01 6.4869E-01 55953E-01 4.7794E-01 3.8934E-01 0.90
8.2120E-01 7.1274E-01 5.8933E-01 4.6207E-01 3.4665E-01 2.2831E-01 0.95
8.4728E-01 6.9223E-01 5.1361E-01 3.2904E-01 1.6311E-01 1.1938E-03 1.00
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Table 9: Error coefficients FOE.(%, 0) - FE,(a, P) for n = O(zeroth), 2(second),
4(fourth), 6 (sixh) and 8(eighth) for a coaxially displaced coil par

a = 1.01, p 0.5, ps = 0.35

n/a1  zeroth second fourth sixth eighth

0.05 1.4646E-03 -1.1488E-06 -7.3922E-09 3.1827E-11 -6.2614E-14
0.10 1.4646E-03 45953E-06 -1.1828E-07 2.0369E-09 -1.6029E-11
0.15 1.4646E-03 -1.0339E-05 -5.9877E-07 2.3202E-08 -4.1081E-10
0.20 1.4646E-03 -1 .381 E-05 -1.8924E-06 1.3036E-07 -4.1035E-09
0.25 1.4646E-03 -2.8721E2.05 4.6202E-06 4.9730E-07 -2.4459E-08
0.30 1.4646E-03 -4.1358E-05 -9.5803E-06 1.4849E-06 -1 .051 7E-07
0.35 1.4646E-03 -5.6292E-05 -1.7749E-05 3.7444E-06 -3.6096E-07
0.40 1.4646E-03 -7.3525E-05 -3.0279E-05 8.3433E-06 -1.0505E-06
0.45 1.4646E-03 -9.3055E-05 -4.501E-05 1.6914E-05 -2.6953E-06
0.50 1.4646E-03 -1 .1 488E-04 -7.3922E-05 3.1 827E-05 -6.2614E-06
0.55 1.4646E-03 -1.3901E-04 -1.0823E-04 5.6384E-05 -1.3422E-05
0.60 1.4646E-03 -1.6543E-04 -1.5329E-04 9.5305E-05 -2.6923E-05
0.65 1.4646E-03 -1.9415E-04 -2.1113E-04 1.5362E-04 -5.1076E-05
0.70 1.4646E-03 -2.2517E-04 -2.83982.04 2.39642-04 -9.2405E-05
0.75 1.4646E-03 -2.5848-04 -3.7423E-04 3.6253E-04 -1.6047E-04
0.80 1.4646E-03 -2.9410E-04 -4.8446E-04 5.33972-04 -2.6893E-04
0.85 1.4646E-03 -3.3201E-04 -6.1741E-04 7.6823E-04 -4.3678E-04
0.90 1.4646E-03 -3.72222-04 -7.7601E-04 1.08252-03 -6.9001E-04
0.95 1.46462-03 4.14722-04 -9.6337E-04 1.49732-03 -1.06342-03
1.00 1.46462-03 45953E-04 -1.1828-03 2.03692-03 -1.60292-03

at = 1.01, =0.55, pj = 0.40

r/a, zeroth second fourth sixth eighth

0.05 1.38582-03 4.06542-07 -8.7867E-09 2.81982-11 -3.5557E-14
0.10 1.38582-03 -1.6258E-06 -1.40592-07 1.80472-09 -9.10262-12
0.15 1.38582-03 -3.65802-06 -7.1172E-07 2.0556E-08 -2.3329E-10
0.20 1.3858E-03 -6.50312-06 -2-24942-06 1.1550E-07 -2.3303E-09
0.25 1.3858E-03 -1.01612-05 -5.4917E.06 4.40592-07 -1.3889E-08
0.30 1.3858E-03 -1.4632E-05 -1.1388E-05 1.31562-06 -5.9722E-08
0.35 1.38582-03 -1.9916E-05 -2.10972-05 3.31752-06 -2.0498E-07
0.40 1.38582-03 -2.60132-05 -3.59902-05 7.3919E-06 -5.96652-07
0.45 1.385E-03 -3.2922E-05 -5.76502-05 1.4986E-05 -1.5306E-06
0.50 1.3W88-03 -4.0645E-05 -. 7867E-05 2.81982-05 -3.55572-06
0.55 1.38582-03 4.91802-05 -1.2865E-04 4.9954E-05 -7.62192-06
0.60 1.3858E-03 -5.85282-05 -1.82202-04 8.41992-05 -1.5289E-05
0.65 1.38582-03 -6.86892-05 -2.5096E-04 1.3611E-04 -2.90052-05
0.70 1.388-03 -7.9663E-05 -3.3755E-04 2.1232E-04 -5.24752-05
0.75 1.3858-03 -9.14502-05 4.44832-04 3.21192-04 -9.11282-05
0.80 1.38582-03 -1.0405E-04 -5.7585E-04 4.7308E-04 -1.5272E-04
0.85 13858-03 -1.17462-04 -7.33882-04 6.80632-04 -2.48042-04
0.90 138582-03 -1.31692-04 -9.22402-04 9.59082-04 -3.91842-04
0.95 1.3858-03 -1.46732-04 -1.14512-03 1.32662-03 -6.03882-04
1.00 1.38582-03 -1.62582-04 -1.40592-03 1.8047E-03 -9.10262-04
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3.7 Axial Field Flux in the Midplane Between a Pair of
Coils

From Figures 24 and 25, it is clear that if the axial field H,(r/al, c/2) was
integrated, then there would be a partial cancellation of fields greater than H0
with those less than H0. Ultimately, in the course of calibrating an induction
coil placed between a pair of coils, the required experimental quantity is the
flux I B dA. Referring to Figure 24 for example, one could choose smaller
values of 0. (3s < 0.3) and maintain an averaged uniformity over a larger area
by increasing r/a. However, this leads to undesirable large positive and
negative variations in H(r/a,, n/2)/H 0 from unity. Furthermore, beyond a
certain r/a, value, the field deviation drops off very quickly and good
uniformity cannot be achieved.

Because of cylindrical symmetry, it is possible to obtain a simple expression
for the flux of the axial field in the mid-plane of the coil gap,
0 = poz2 I H(t, %/2)t dt. Here the zonal harmonic expansion form is
convenient because the field geometry factors, Table 2, are independent of 4.
The flux 0 normalized to that of a uniform field (00) obtains from equations 33
and 38,

0- 1 FO 4814 [FoE 2(a'[P) - FE 2(a,,O,)]

+ [F 0E4 (a13) _FE(aOj Lt[E6aP F6(gp)4
+-+ t~+ F,E8 c,,3) -. )

640

For a = 1.01, 13 = 0.5 and 13 = 0.35 (Fig. 24), HZ(0.65, xc/2) differs by 3% from H0,
but the flux within the central mid-plane region bounded by a circle of radius
0.65 a, differs by only 0.5% from the flux of a homogeneous field. Typical
values of ((r/al), 0/0) evaluated for the above coil geometry from eqn. 40 are
as follows: (0.3), 1.0062; (0.4), 1.0095; (0.5), 1.0114; (0.5726)1, 1.0103; (0.6),
1.0091; (0.65), 1.0050 and (0.7), 0.9979. For a = 1.01, 13 = 0.55 and 13 = 0.4, coil
geometry (Fig. 25), typical values of ((/al), 0/0) are: (0.2), 1.0010; (0.3),
1.0015; (0.4), 1.0010; (0.45), 0.9998; (0.5), 0.9977 and (0.6), 0.9887.

(H.(rla, it/2)/Ho) - 1.00
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4. Helmholtz Coil Apparatus

4.1 Introduction

Based on the computations given in section 3, a Helmholtz coil pair was
constructed to provide good field uniformity over radial distances of
approximately one metre. Since the lengths of the coils which require
calibrating will be short, the field homogeneity H(z/al, 0)/H 0 above and below
the central plane of the coil pair is not critical. Furthermore, in order to
calibrate smaller coils with radii significantly less than one metre, it was
decided to have a second coil gap setting such that the field homogeneity could
be improved.

4.1.1 Physical Description of Coil Pair

A Helmholtz coil pair was constructed in order to achieve the field
homogeneity predicted in Figures 24 and 25, specifically a = 1.01, 0 = 0.50,
08 = 0.35 and a = 1.01, 03 = 0.55, Pg = 0.40 where a, = 99 cm and consequently
a2 = 99.99 - 100 cm. This leads to an overall coil length (including gap) and
gap spacing of 99 cm, 69.3 cm and 108.9 cm, 79.2 cm respectively for the above
mentioned P, P. values. The cross-section in each coil is a rectangle 1 cm by
14.85 cm.

The 2 m diameter coil pair needed to be placed in a stable frame to ensure the
correct coil spacing while allowing easy access for coils which require
calibrating. The framework consisted of four stout vertical wooden posts
which supported two square wooden platforms. These in turn secured the
coils, maintained the correct coil gap and held the vertical posts in a rigid
framework. The entire structure was made from timber, glue and nylon bolts.
Within the coil gap, two horizontal stout timber beams were cross-braced
diagonally to the vertical posts. This structure which was vertically adjustable
formed the support for the coil which was being calibrated.

The two square platforms which support the coils contain wooden dowel pegs
at 200 spacings in the form of a circle. The pegs have two functions; firstly to
secure the coils in the correct position such that the coil pair is concentrically
aligned along the vertical axis. Secondly, the two square platforms when
bolted together make up the demountable former upon which both coils were
wound. Here the pegs hold the cheeks apart at the correct spacing and also
interlock at 100 spacings to provide the pseudo circular support for a plastic
strip which forms the mandrel. This technique enables both coils to be wound
on the same coil former thus helping to preserve the same geometry.

A horizontal coil pair configuration, rather than a vertical one, enables a more
even weight distribution of the coils2 and also allows the coil which requires
calibrating to be more easily aligned. In order to minimize weight, aluminium
wire was chosen instead of copper because its density is less than one third of

2 The coils would not be able to support their own weight in a vertical configuration and would

thus require further structural support.
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copper. An alternative would be to use plastic insulated wire. This has the
advantage of requiring fewer turns of wire for the same a, 0 parameters, the
only difference being the larger space packing factor associated with the plastic
coated wire compared to enamelled wire. It is worth noting that for plastic
insulated wire the diameter tolerances of the conducting filaments can be as low
as 7% according to Cable Makers of Australia. This error might be expected to
lead to an overall error in H, because of the dependence of j, and . on the
conductor cross sectional area. The homogeneity is unaffected. However jek
determines the overall current density NI/[2b(a2 - a,)], and the error reduces to
that of 2b(a2 - a,). Furthernore, the small deviation from uniform current
density distribution caused by the deviation in wire diameter would be small
over the large dimensions of the coils.

The coils were wound with 2.00 mm diameter grade 2 polyester imide
enamelled aluminium wire having the following properties: PAM =

2.824 x 108 Q m at 20°C, d, = ? 7 x 10 kg m- , R - 9 x 103 Q m1 , 4.7 turns per
cm and 20 turns/cm2. This implies X = 0.63, MAI = 16.8 kg, R - 17.80 0 and
N - 300 turns. These figures refer to each individual coil.3

4.1.2 Coil Inductance and Mutual Inductance

In order to minimize the inter-winding capacitance, inductance and coil
winding effort, thick wire was used instead of thin wire. The inductance (H)
for an individual coil was computed from Wheelers' formula for short coils [81

2.916 x 106N2o[ 4.97 1 (41)

Lo (a2-al +2b)

which gives 0.48 H for the above coils (N = 333) and compares favourably with
the measured inductance of 0.47 H. In eqn. 41, r is the mean coil radius,
(a2 + al)/2. The mutual inductance M was computed from expressions with
tabulated coefficients representative of coil geometry [91 and gave M = 0.0696 H
for coils of rectangular cross-sections. (The same result obtains with the two
coils each represented by a single circular filament multiplied by the square of
the number of turns.) By measuring the inductance of the coil pair, both series
aiding and series opposing, the mutual inductance was determined to be
0.068 ± 0.016 H.

3 The two coils were individually wound with five layers and a total number of turns N = 333.
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4.2 Theoretical Fields

4.2.1 Field at Centre of a Non-zero Cross-section Coil

As an approximation, a coil can be replaced by a single filamentary loop where
the loop radius a is (a2 + a)/2. From eqn. 2 at N = 333,
B.(0, 0) = [2.103 x 104 11 T. For a coil of non-zero cross-section with the above
parameters, eqn. 7 leads to B.(O, 0) = [2.118 x 104 1 T where a = (100/99) =
1.0101. The single filamentary loop coil underestimates the central field by less
than 1%.

4.2.2 Field at Centre of Coaxially Displaced Coils

From eqn. 33, the field at the centre of the gap for a pair of coils is given by
B2(0, 0) = [3.284 x 1 0 -4 ] T for a = 1.01, 0 = 0.50, Og = 0.35 and B,(0, 0) =
[3.107 x 10 4 / ] T for a = 1.01, 3 = 0.55, Pg = 0.40. The central field of the
Helmholtz coil is 55% or 47% higher than the single coil depending on the gap.

4.3 Determination of the Calibrating Field

4.3.1 Search Coil

The field at the centre of the coil pair can be predicted from the expressions for
B,(0, 0) in section 4.2.2 from the current in the coils which can be monitored
from the voltage across a 1 Q resistor in series with the coils. The resonant
frequency of the coil pair and the individual coils was measured at about
2.1 kHz. Thus the predicted field would not be expected to be accurate above
frequencies where the inter-winding capacitance shunts the current across the
coil. In this case the voltage drop across the 1 fl sense resistor does not give a
true indication of the current in the windings and hence of the magnetic field.
Furthermore, introducing a coil at the centre of the gap can further load the
Helmholtz coils at and above the resonant frequency of the centre coil. Even if
the centre coil is open circuit, it acts as a shorted turn at the coil centre above
resonance.

A convenient method of determining the calibration field is to use a single
layer search coil wound on a non metallic tube. The voltage induced by a
sinusoidal magnetic field at frequency f, orthogonal to the plane of the search
coil windings is

V = 2Nn2 r 2fB (42)

where r is the radius of the winding in metres, B is in tesla and V is in volts.
One hundred turns of 38 S.W.G. enamelled copper wire was wound on a PVC
tube having an outside diameter of 155.5 mm. The search coil calibration
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factor is 11.93 V V"' Hz"1 or equivalently

B - 8.381 x 10-2 V (43)

The resonant frequency, 7.5 MIHz, of the search coil lies well above the
Helmholtz coil resonance. (A less sensitive search coil wound with a hundred
turns (38 S.W.G.) on 25.4 mm diameter rod, having a calibration factor of
03184 V T' Hz' was also used.)

43.2 Comparison of Search Coil Measurements and Theoretical
Expressions

In the following discussion, B 2 refers to the field determined from
measurements taken with the more sensitive search coil (eqn. 43) and BC*1 refers
to measurements taken with the smaller less sensitive search coil. In addition,
BID refers to the field at the coil pair centre obtained from the theoretical
expression, B,(0, 0) = 3.284 x 104 1 T, by measuring the voltage drop across the
one ohm resistor in series with the coil pair windings. All voltages were
measured with a spectrum analyser.4

Below about 500 Hz, determinations of the central field, with search coils and
from the theoretical expressions gave agreement within 4% or better. The
discrepancy at higher frequencies is illustrated in Figure 26 which plots B,*2/BjQ
as a function of frequency. Similar results obtain for B*'/B. Clearly, above
500 to 600 Hz, the determination of the central field from the measurement of
the Helmholtz coil current is inaccurate. This frequency range is further
reduced if the central coil which requires calibration has a resonance frequency
below the Helmholtz coil pair resonance frequency.

4.33 Comparisons with Fluxgate Magnetometers

The field from the Helmholtz coil pair was also measured with a Domain
magnetic underwater sensor (MUWS1 triaxial fluxgate system) and a less
sensitive fluxgate probe (Institut Dr Forster Magnotoscop 1.068). The field
measured by these two sensors are designed B. and BF respectively. The only
significant restriction with these two instruments is that they are limited to low
frequency operation, especially the MUWS1. Measurements were taken at
1 Hz and 0.5 Hz over a range of coil currents with care being taken not to
saturate the MUWSI sensor. The estimated errors are B'I/B,0 : ± 3%,
BFIBIQ: ± 3%, and B.IB, 0 : ± 2%. Good agreement to within experimental
error was found between BI0 and B, and between BIG and BF. Reasonably
good agreement was also found for B!'2/B,0 (1.043 ± 0.020).

4 In this way one instrument allowed measurement of voltages over the extremely low frequency
range and furthermore, the waveform could be monitored to allow for distortion or non-linearities.
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Figure 26: Ratio of magnetic field measured with search coil (B! 2) to that measured
from current in Helmholtz coil (Bla) as a function of frequency. (At high frequencies,
B10 is not derived from the current in the coil).

The above measurements were restricted to f < 1.0 Hz. At higher frequencies
up to 100 Hz, the search coil field measurements were checked with a known
calibrated field generated by the vertical component of the three axis cube
arrangement of the magnetic facility at the Shark Point degaussing range,
Sydney.5 A series of magnetic field measurements with both search coils
reveal an agreement generally within ± 2% of the computed field at the centre
of the cube.

s Here, agreement to within 1% was found with the MUWSI at 0.5 Hz.
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4.4 Field Homogeneity

The field homogeneity of the coil pair is readily determined by taking field
measurements using a search coil at known distances along one of the arms of
the cross-beams, see 4.1.1. The search coil windings are located in the central
plane between the Helmholtz coil pair. Measurements were also taken for
displacements above the centre of the coil pairn Thus the theoretical curves of
H2(r/al, x/2)/H and H.(z/a 1, 0)/H 0 in Figure 24 can be verified experimentally.
The results of the field uniformity tests are given in Table 10. They show

excellent agreement with the theoretical curves.

Table 10: Magnetic field homogeneity assuming a = 1.01, 0 = 0.5, , = 0.35,
Figure 24

Hz (4, I/2)/Ho

Experimental Theoretical (Table 3.2)

1.0 1.0 0.0
1.0 1.002 0.1
1.0 1.006 0.2
1.012 1.011 03
1.012 1.015 0.4
1.012 1.012 0.5
0.977 0.992 0.6
0.923 0.936 0.7
0.813 0.812 0.8
0.603 0569 0.9

H (y, 0)/H 0

Experimental Theoretical (Table 3.2)

1.0 1.0 0.0
0.994 0.997 0.1
0.977 0.986 0.2
0.966 0.966 0.3

5. Conclusion

The design for air-core uniform current density coils is discussed in terms of
coil geometry. This enables the field at the centre of the coil (H0) to be
computed or determined graphically from Figures 3 and 4.

The magnetic field within the region of the coil centre is evaluated using
Garrett's [31 zonal hormonic expansion technique. This enables the radial and
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axial fields to be expressed as a sum of terms involving geometry factors and
normalized distances. The direct dependence of the field expressions on H
allows the field homogeneity to be conveniently expressed in terms of geometry
factors alone. Suitable convergence of the series expansion must be achieved.
Table 3 gives the individual contributions of the second-, fourth-, sixth- and
eighth-order terms over a wide range of coil geometries. Several important
examples are given in Figures 6 to 8.

Hart's [21 method for computing the radial and axial fields is also discussed.
This involves a direct evaluation of the field by numerical integration of a
volume element within the coil. A comparison of this method is made with
the zonal harmonic expansion approach. The former technique is a useful
computational method for an individual coil geometry but, unlike the expansion
method, is not suited for modelling studies.

The superposition principle and symmetry arguments are next employed to
compute the axial fields along the axis of two coaxially displaced coils. A
comparison of the field homogeneity generated by this system with that of a
single coil reveals the improvement offered by a two-coil system.

The effectiveness of the zonal harmonic expansion method becomes more
apparent when it is applied to the multiple coil system to provide expressions
for the fields and their homogeneity within the central region of the gap formed
by the pair of coils. The correct gap width for maximum homogeneity or for
perfectly compensated coils can be obtained either graphically (Figs 19 to 22) or
numerically. The graphical approach gives a good approximate result and
clearly shows the correct gap setting as a function of coil geometry. A
particular result that emerges from Figures 19 and 21 is that by choosing a
value of 0 such that F E2(a, 03) is a minimum, then for small a, the correct
Helmholtz coil gap equals the internal radius of short coils, A.s J0. The
deviations associated with this rule of thumb for larger values of a can also be
gauged from Figures 19 to 22.

The numerical solution of the correct gap setting for fourth-order
compensated coils allows the contributions of the remaining higher order terms
to be automatically determined. This allows the computation and tabulation of
error limits for different coil geometries (Table 6).

Equations 32 and 33 allow modelling of the field homogeneity for a wide
range of gap settings. Fourth-order compensation is included by substituting
the required Og value, see Figures 19 to 22 and section 3.4. The resultant field
homogeneities H(r/a1, ic/2)/H o are plotted so as to examine the trade-off
obtained by achieving a larger area of field uniformity at the expense of
degrading the degree of field uniformity. Depending upon the application, this
can be advantageous since the total flux of the axial field in the midplane can
approach the value that would exist for a perfectly uniform field because of the
partial cancellation of the positive and negative areas enclosed by the
H,(r/a1, ic/2)/H o versus r/a, curves. This advantage does not apply to the
monotonically decreasing function HW(z Ia1, )/HO.

In section 4, a physical description and construction details are given for a coil
pair based on the theoretical expressions developed in section 3. The field
predictions were checked with the aid of two search coils and two fiuxgate
magnetometers. Agreement between theory and experiment lies within 4%.
Furthermore, the field homogeneity was found to be in excellent agreement
with theoretical expectations.
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Appendix A

Numerical Computations

Fortran source code (HELMHZ.for) was developed for evaluating the axial field
deviation from the central field for a Helmholtz coil. The percentage deviation
from the central field is read in as the variable ERROR. The variable DELTA
determines the tolerance in the Newton-Raphson solution for determining f3.
Sample computations are shown in Table 6.

Fortran source code (HSPLIT.for) was also written to compute the deviation
of the axial magnetic field from the central field at points located along the axis,
Hz(z/al, )/H O and radially away from the gap centre, I-4(r/al, x/2)/H o. Ho
refers to the axial field at the centre of the gap. Computations are carried out
over a range of specified P. values for a given cE, P value; ae, P and P. are
defined in Figure A.1. (Unlike Figure 14, 2P is equivalent to the overall coil
length including the gap, whereas previously in Figure 14, 2P referred to the
length of each individual coil).

2b

2 g

a2  a 2a1

aal

g
Pg a,

Figure A.1: Coaxial coil pair.

The following variables are required from a data file,

AC, BC the ax, 0 values
GMIN the initial value of p/a, (z/al or ra 1 )
NGAMMA the number of increments in p/a 1
DELG the p/a 1 increment
NBGAP the number of P. values
BETA(I) the P. values

A subroutine COEFS computes the required error coefficients F(Rc, P), FE2(x, j)
.... FE8(x, 0) in double precision.

These programmes may be requested from the author if desired.
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